2014年11月20日木曜日
Wavelet解析
Torrence and Compo [1998] のwavelet解析手法と、そのツールは我々の分野でよく使われる。私もMiyama and Miyazawa [2014]をで使用している。その関連した発表をAOGS 2014でした時に、Torrence and Compo [1998] はスケールが大きいほうを過大評価するバイアスがあり、それに関する論文(Liu et al. 2007と関連するweb page)を教えていただいた。
下の図はLiu et al. 2007のFig.2に対応する、1,8,32,128,365日のsineカーブの単純な重ね合わせ(a)のシグナルにwavelet解析をかけたものである。Torrence and Compo [1998] の手法(b,c)ではスケールが大きい(長周期)のほうがシグナルが大きいと解析されてしまう。一方、Liu et al. [2007]はスペクトルをスケールで割ることを提案しており、これであれば(d,e)、各周期が同じくらいの強さであるという合理的な結果が出る。
上記の図を作るwavelet解析のツールをpythonに翻訳し、IPython Notebookにしたものはこちら。
http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/u0wb931fs4qfrpn/wavelet_test_sine.ipynb
さらに、NINO SST3のwavelet解析した(Liu et al. 2007のFig 4に対応)物をIPython Notebookしたものはこちら。
http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/400j051n0sustcy/wavelet_test_ElNino3_Liu.ipynb
登録:
コメントの投稿 (Atom)
1 件のコメント:
Anyone here interested in Wavelets?
Please, check out my Master dissertation about PCBs inspection using Fast Wavelet Transform:
http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/338849/1/Bonello_DanielKatz_M.pdf
Thank you ;)
コメントを投稿