Torrence and Compo [1998] のwavelet解析手法と、そのツールは我々の分野でよく使われる。私もMiyama and Miyazawa [2014]をで使用している。その関連した発表をAOGS 2014でした時に、Torrence and Compo [1998] はスケールが大きいほうを過大評価するバイアスがあり、それに関する論文(Liu et al. 2007と関連するweb page)を教えていただいた。
下の図はLiu et al. 2007のFig.2に対応する、1,8,32,128,365日のsineカーブの単純な重ね合わせ(a)のシグナルにwavelet解析をかけたものである。Torrence and Compo [1998] の手法(b,c)ではスケールが大きい(長周期)のほうがシグナルが大きいと解析されてしまう。一方、Liu et al. [2007]はスペクトルをスケールで割ることを提案しており、これであれば(d,e)、各周期が同じくらいの強さであるという合理的な結果が出る。
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEib1tfVs3uOL7OAt-AxfV0Mh7CThPhCpcbvBQ1hv7KPbTR9Ux61at_C1qVW_ldJm1PiTnkGndtfiYri7qbObWppzHjTRglt9z4kZjteWX5h7nijHrLQHP4BZGMLwEmC2RXfO-24Ta2PgAA/s1600/wavelet_test_sine.png)
上記の図を作るwavelet解析のツールをpythonに翻訳し、IPython Notebookにしたものはこちら。
http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/u0wb931fs4qfrpn/wavelet_test_sine.ipynb
さらに、NINO SST3のwavelet解析した(Liu et al. 2007のFig 4に対応)物をIPython Notebookしたものはこちら。
http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/400j051n0sustcy/wavelet_test_ElNino3_Liu.ipynb